

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

ReBloom Bloom Filter Command Documentation

BF.RESERVE

Format:

BF.RESERVE {key} {error_rate} {size}

Description:

Creates an empty Bloom Filter with a given desired error ratio and initial capacity.
This command is useful if you intend to add many items to a Bloom Filter,
otherwise you can just use BF.ADD to add items. It will also create a Bloom Filter for
you if one doesn’t already exist.

The initial size and error rate will dictate the performance and memory usage
of the filter. In general, the smaller the error rate (i.e. the lower
the tolerance for false positives) the greater the space consumption per
filter entry.

Parameters:

	key: The key under which the filter is to be found

	error_rate: The desired probability for false positives. This should
be a decimal value between 0 and 1. For example, for a desired false
positive rate of 0.1% (1 in 1000), error_rate should be set to 0.001.
The closer this number is to zero, the greater the memory consumption per
item and the more CPU usage per operation.

	size: The number of entries you intend to add to the filter.
Performance will begin to degrade after adding more items than this
number. The actual degradation will depend on how far the limit has
been exceeded. Performance will degrade linearly as the number of entries
grow exponentially.

Complexity

O(1)

Returns

OK on success, error otherwise.

BF.ADD

Format

BF.ADD {key} {item}

Description

Adds an item to the Bloom Filter, creating the filter if it does not yet exist.

Parameters

	key: The name of the filter

	item: The item to add

Complexity

O(log N).

Returns

“1” if the item was newly inserted, or “0” if it may have existed previously.

BF.MADD

Format

{key} {item} [item...]

Description

Adds one or more items to the Bloom Filter, creating the filter if it does not yet exist.
This command operates identically to BF.ADD except it allows multiple inputs and returns
multiple values.

Parameters

	key: The name of the filter

	items: One or more items to add

Complexity

O(log N).

Returns

An array of booleans (integers). Each element is either true or false depending
on whether the corresponding input element was newly added to the filter or may
have previously existed.

BF.INSERT

BF.INSERT {key} [CAPACITY {cap}] [ERROR {error}] [NOCREATE] ITEMS {item...}

Description

This command will add one or more items to the bloom filter, by default creating
it if it does not yet exist. There are several arguments which may be used to
modify this behavior.

Parameters

	key: The name of the filter

	CAPACITY: If specified, should be followed by the desired capacity for the
filter to be created. This parameter is ignored if the filter already exists.
If the filter is automatically created and this parameter is absent, then the
default capacity (specified at the module-level) is used. See BF.RESERVE
for more information on the impacts of this value.

	ERROR: If specified, should be followed by the the error ratio of the newly
created filter if it does not yet exist. If the filter is automatically
created and ERROR is not specified then the default module-level error
rate is used. See BF.RESERVE for more information on the format of this
value.

	NOCREATE: If specified, indicates that the filter should not be created if
it does not already exist. If the filter does not yet exist, an error is
returned rather than creating it automatically. This may be used where a strict
separation between filter creation and filter addition is desired. It is an
error to specify NOCREATE together with either CAPACITY or ERROR.

	ITEMS: Indicates the beginning of the items to be added to the filter. This
parameter must be specified.

Examples

Add three items to a filter, using default parameters if the filter does not already
exist:

BF.INSERT filter ITEMS foo bar baz

Add one item to a filter, specifying a capacity of 10000 to be used if it does not
already exist:

BF.INSERT filter CAPACITY 10000 ITEMS hello world

Add 2 items to a filter, returning an error if the filter does not already exist

BF.INSERT filter NOCREATE ITEMS foo bar

Complexity

O(log N).

Returns

An array of booleans (integers). Each element is either true or false depending
on whether the corresponding input element was newly added to the filter or may
have previously existed.

BF.EXISTS

Format

BF.EXISTS {key} {item}

Description

Determines whether an item may exist in the Bloom Filter or not.

Parameters

	key: the name of the filter

	item: the item to check for

Complexity

O(log N).

Returns

“0” if the item certainly does not exist, “1” if the item may exist.

BF.MEXISTS

Format

BF.MEXISTS {key} {item} [item...]

Description

Determines if one or more items may exist in the filter or not.

Parameters

	key: name of the filter

	items: one or more items to check

Complexity

O(log N).

Returns

An array of boolean values (actually integers). A true value means the
corresponding item may exist in the filter, while a false value means it does not.

BF.SCANDUMP

Format

BF.SCANDUMP {key} {iter}

Description

Begins an incremental save of the bloom filter. This is useful for large bloom
filters which cannot fit into the normal SAVE and RESTORE model.

The first time this command is called, the value of iter should be 0. This
command will return successive (iter, data) pairs until (0, NULL) to
indicate completion.

A demonstration in python-flavored pseudocode:

chunks = []
iter = 0
while True:
 iter, data = BF.SCANDUMP(key, iter)
 if iter == 0:
 break
 else:
 chunks.append([iter, data])

Load it back
for chunk in chunks:
 iter, data = chunk
 BF.LOADCHUNK(key, iter, data)

Parameters

	key Name of the filter

	iter Iterator value. This is either 0, or the iterator from a previous
invocation of this command

Complexity

O(log N)

Returns

An array of Iterator and Data. The Iterator is passed as input to the next
invocation of SCANDUMP. If Iterator is 0, then it means iteration has
completed.

The iterator-data pair should also be passed to LOADCHUNK when restoring
the filter.

BF.LOADCHUNK

Format

BF.LOADCHUNK {key} {iter} {data}

Description

Restores a filter previously saved using SCANDUMP. See the SCANDUMP command
for example usage.

This command will overwrite any bloom filter stored under key. Ensure that
the bloom filter will not be modified between invocations.

Parameters

	key Name of the key to restore

	iter Iterator value associated with data (returned by SCANDUMP)

	data Current data chunk (returned by SCANDUMP)

Complexity O

O(log N)

Returns

OK on success, or an error on failure.

ReBloom Cuckoo Filter Documentation

CF.RESERVE

Format:

CF.RESERVE {key} {capacity}

Create an empty cuckoo filter with an initial capacity of {capacity} items.
Unlike a bloom filter, the false positive rate is fixed at about 3%, depending
on how full the filter is.

The filter will auto-expand (at the cost of reduced performance) if the initial
capacity is exceeded, though the performance degradation is variable depending
on how far the capacity is exceeded. In general, the false positive rate will
increase by for every additional {capacity} items beyond initial capacity.

Parameters:

	key: The key under which the filter is to be found

	capacity: Estimated capacity for the filter.

Complexity

O(1)

Returns

OK on success, error otherwise

CF.ADD

CF.ADD {key} {item}

Description

Adds an item to the cuckoo filter, creating the filter if it does not exist.

Cuckoo filters can contain the same item multiple times, and consider each insert
to be separate. You can use CF.ADDNX to only add the item if it does not yet
exist.

Parameters

	key: The name of the filter

	item: The item to add

Complexity

O(log N)

Returns

“1” on success, error otherwise.

CF.ADDNX

CF.ADDNX {key} {item}

Description

Adds an item to a cuckoo filter if the item did not exist previously.
See documentation on CF.ADD for more information on this command.

Note that this command may be slightly slower than CF.ADD because it must
first check to see if the item exists.

Parameters

	key: The name of the filter

	item: The item to add

Complexity

O(log N)

Returns

“1” if the item was added to the filter, “0” if the item already exists.

CF.INSERT

CF.INSERTNX

CF.INSERT {key} [CAPACITY {cap}] ITEMS {item ...}
CF.INSERTNX {key} [CAPACITY {cap}] ITEMS {item ...}

Description

Adds one or more items to a cuckoo filter, allowing the filter to be created
with a custom capacity if it does not yet exist.

These commands offers more flexibility over the ADD and ADDNX commands, at
the cost of more verbosity.

Parameters

	key: The name of the filter

	CAPACITY: If specified, should be followed by the desired capacity of the
new filter, if this filter does not yet exist. If the filter already
exists, then this parameter is ignored. If the filter does not yet exist
and this parameter is not specified, then the filter is created with the
module-level default capacity. See CF.RESERVE for more information on
cuckoo filter capacities.

	NOCREATE: If specified, prevent automatic filter creation if the filter
does not exist. Instead, an error will be returned if the filter does not
already exist. This option is mutually exclusive with CAPACITY.

	ITEMS: Begin the list of items to add.

Complexity

O(log N)

Returns

An array of booleans (as integers) corresponding to the items specified. Possible
values for each element are:

	> 0 if the item was successfully inserted

	0 if the item already existed and INSERTNX is used.

	<0 if an error ocurred

Note that for CF.INSERT, unless an error occurred, the return value will always
be an array of >0 values.

CF.EXISTS

CF.EXISTS {key} {item}

Check if an item exists in a Cuckoo Filter

Parameters

	key: The name of the filter

	item: The item to check for

Complexity

O(log N)

Returns

“0” if the item certainlty does not exist, “1” if the item may exist. Because this
is a probablistic data structure, false positives (but not false negatives) may
be returned.

CF.DEL

CF.DEL {key} {item}

Description

Deletes an item once from the filter. If the item exists only once, it will be
removed from the filter. If the item was added multiple times, it will still be
present.

!!! danger “”
Deleting elements that are not in the filter may delete a different item,
resulting in false negatives!

Parameters

	key: The name of the filter

	item: The item to delete from the filter

Complexity

O(log N)

Returns

“1” if the item has been deleted, “0” if the item was not found.

CF.COUNT

CF.COUNT {key} {item}

Description

Returns the number of times an item may be in the filter. Because this is a
probablistic data structure, this may not necessarily be accurate.

If you simply want to know if an item exists in the filter, use CF.EXISTS, as
that function is more efficient for that purpose.

Parameters

	key: The name of the filter

	item: The item to count

Complexity

O(log N)

Returns

The number of times the item exists in the filter

CF.SCANDUMP

Format

CF.SCANDUMP {key} {iter}

Description

Begins an incremental save of the cuckoo filter. This is useful for large cuckoo
filters which cannot fit into the normal SAVE and RESTORE model.

The first time this command is called, the value of iter should be 0. This
command will return successive (iter, data) pairs until (0, NULL) to
indicate completion.

A demonstration in python-flavored pseudocode:

chunks = []
iter = 0
while True:
 iter, data = CF.SCANDUMP(key, iter)
 if iter == 0:
 break
 else:
 chunks.append([iter, data])

Load it back
for chunk in chunks:
 iter, data = chunk
 CF.LOADCHUNK(key, iter, data)

Parameters

	key Name of the filter

	iter Iterator value. This is either 0, or the iterator from a previous
invocation of this command

Complexity

O(log N)

Returns

An array of Iterator and Data. The Iterator is passed as input to the next
invocation of SCANDUMP. If Iterator is 0, then it means iteration has
completed.

The iterator-data pair should also be passed to LOADCHUNK when restoring
the filter.

CF.LOADCHUNK

Format

CF.LOADCHUNK {key} {iter} {data}

Description

Restores a filter previously saved using SCANDUMP. See the SCANDUMP command
for example usage.

This command will overwrite any cuckoo filter stored under key. Ensure that
the cuckoo filter will not be modified between invocations.

Parameters

	key Name of the key to restore

	iter Iterator value associated with data (returned by SCANDUMP)

	data Current data chunk (returned by SCANDUMP)

Complexity O

O(log N)

Returns

OK on success, or an error on failure.

JReBloom

A Java Client Library for ReBloom [https://rebloom.io]

Overview

This project contains a Java library abstracting the API of the ReBloom Redis module, that implements a high
perfomance bloom filter with an easy-to-use API

See http://rebloom.io for installation instructions of the module.

Usage example

Initializing the client:

import io.rebloom.client.Client

Client client = new Client("localhost", 6378);

Adding items to a bloom filter (created using default settings):

client.add("simpleBloom", "Mark");
// Does "Mark" now exist?
client.exists("simpleBloom", "Mark"); // true
client.exists("simpleBloom", "Farnsworth"); // False

Use multi-methods to add/check multiple items at once:

client.addMulti("simpleBloom", "foo", "bar", "baz", "bat", "bag");

// Check if they exist:
boolean[] rv = client.existsMulti("simpleBloom", "foo", "bar", "baz", "bat", "mark", "nonexist");

Reserve a customized bloom filter:

client.createFilter("specialBloom", 10000, 0.0001);
client.add("specialBloom", "foo");

Quick Start Guide for ReBloom

Bloom filters and cuckoo filters work fairly similarly at the API level; they
both allow you to add items to a set (in effect making sure the item has been
‘seen’ by the set).

Building and running

git clone https://github.com/goodform/rebloom.git
cd rebloom
make

Assuming you have a redis build from the unstable branch:
/path/to/redis-server --loadmodule ./rebloom.so

Bloom Filters

Bloom: Adding new items to the filter

A new filter is created for you if it does not yet exist

127.0.0.1:6379> BF.ADD newFilter foo
(integer) 1

Bloom: Checking if an item exists in the filter

127.0.0.1:6379> BF.EXISTS newFilter foo
(integer) 1

127.0.0.1:6379> BF.EXISTS newFilter notpresent
(integer) 0

Bloom: Adding and checking multiple items

127.0.0.1:6379> BF.MADD myFilter foo bar baz
1) (integer) 1
2) (integer) 1
3) (integer) 1

127.0.0.1:6379> BF.MEXISTS myFilter foo nonexist bar
1) (integer) 1
2) (integer) 0
3) (integer) 1

Bloom: Creating a new filter with custom properties

127.0.0.1:6379> BF.RESERVE customFilter 0.0001 600000
OK

127.0.0.1:6379> BF.MADD customFilter foo bar baz

Cuckoo Filters

Cuckoo: Adding new items to a filter

A new filter is created for you if it does not yet exist

127.0.0.1:6379> CF.ADD newFilter foo
(integer) 1

You can add the item multiple times. The filter will attempt to count it.

Cuckoo: Checking whether item exists

127.0.0.1:6379> CF.EXISTS newFilter foo
(integer) 1

127.0.0.1:6379> CF.EXISTS newFilter notpresent
(integer) 0

Cuckoo: Deleting item from filter

127.0.0.1:6379> CF.DEL newFilter foo
(integer) 1

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

